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The hardness of a metal is characterized by its ability to withstand 
plastic deformation when some object is pressed into it. In particular, 
Brine11 hardness B is defined by the diameter of the impression d formed 
by a sphere of diameter D when it is pressed into the metal by an er- 
ternal load of given magnitude P 

B= 
2P 

nD(D- JfD2--da) 
(0.1) 

The magnitude of B increases nearly proportionately with the ordinate 
of the static stress-strain curve (P - E) at which a metal deforms with 
work-hardening [l, 21. This effect may be explained in terms of the one- 
dimensional (P - E) diagram as follows. In a metal which has been work- 
hardened by the attainment of a certain plastic strain trP followed by 
unloading, it is necessary in order to obtain a second plastic strain of 
the same amount Ed, to apply a second stress larger than the first 
stress. It may be said that for a similar deformation there occurs cold 
working or an increase in hardness, which is also sometimes termed ‘work- 
hardening”, and which, strictly speaking. is related to the increase in 
the ordinate of the (P - E) curve in the elastic range. 

Of technical interest is the problem of increasing the hardness of a 
metal without having it deform plastically as noted above. Such a prob- 
lem arises, for example, when it is necessary to increase the hardness 
of a surface layer of a fabricated Part without significantly changing 
the dimensions or shape of the part. For some time past, this problem 
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has been solved by means of shock waves generated by the explosion of 

distributed charges on the surface of the fabricated part. 

The possibility of producing cold working with insignificant residual 

deformations may be explained by the fact that the yield limit of many 

metals increases with an increase in the velocity of deformation. If the 

stress level attained by an increase of deformation velocity is set, 

after unloading, by that which appears 8s 8 new static yield limit of 

the material upon repeated losding, then it is obvious thst the met81 

will experience dynamic work-hardening. This is expressed, as in the 

static case, by an irreversible increase of the ordinate of the P(E) 

curve in a one-dimensional test. However. in contrast to the static case, 

dynamic work-hardening is determined by the velocity of deformation and 

the temperature, and is not related to the increase in plastic deforma- 

tion. If we assume that the cold working is proportion81 to the dynamic 

work-hardening, then we obtain a satisfactory explsnation of the phe- 

nomenon of the increase of hardness af 8 metal under shock loading. 

The dependence of the mechsnical behavior of a metal on the velocity 

of deformation has been investigated in 8 number of papers, reviews of 

which are contained in E3.43. In addition, we point out [53 from earlier 

work. Here, in experiments on tin wires for the relationship between the 

stress p and deformation (strain) velocity, d = da/dt, at the same magnf- 

tude of plastic deformation Ed, the following formula 18s established 

. . 

P=P*+P1We%f fpo, Pl, 'EL3 -L cow P4 

In Cd, the dependence between p and i that was obtained for steel 

noticeably deviated from (0.2). 

2. We shall assume that the medium can experience dynamic work-hard- 

ening and that this property is determined by certain parameters Xi. 

The parameters xi must therefore describe the yield state of the medium, 
so that a variation in the parameters can characterize the acquisition 

of new properties by the metal in the process being investigated [71. 

We assume that the yield surface of the medium is given by differ- 

ential equations of the form 

d62’ 3 bj’daij = (A (X) L [a,’ - Ho of, T)] + ‘z} dX + aT 

aHodT (1.1) 

Qij' = 6ij *- f 6&j, 

Here 6 . . is the unit tensor, 

%a 

Pij are the components of the stress 

tensor in rtesian coordinates, p is the density of the medium, H, is 

a certain function, known from experiments, of the absolute temperature 
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T and the parameter 

I’ I 
X = t?ij Eij 3 Eij' = Eij - $ E&j, 8 = Ekk (1.2) 

that characterize the strain velocity, and ~~~ are components of the 

strain tensor. In equations (1.1)) A(x) and L(u) are certain functions, 

with L(u) having the following form in the neighborhood of u = 0 

Y-l - 

L(u)=u y +... , r>l, L(0) = 0 (1.3) 

We shall use Cartesian coordinates in the sense of Euler. differ- 

entiation of components of tensors with respect to time, referred to 

particles of the medium, are to be understood as material derivatives. 

Hence 

Eij_ 2_ @I),+ zIk (!3), 

where vk are velocity components of a particle. 

lhe Pfaffian form 

particular solution, 

(1.1) of three variables u2 ‘, x and 7’ has, as a 

the expression 

02’ = H, (x, q (1.4) 

This solution is the envelope of a one-parameter family of surfaces 

~3’ = H (x, T, x”) (1.5) 

where x* is the parameter of the family. The function H(x, T, x*) in 

(1.5) satisfies equation (1.1) and has the form 

H (x, T, x*1 = H, (x, T) + u (x, x*) (1.6) 

where u(x, x*) is found from the equation 

(l.i) 

We shall assume that in the elastic region the parameter x may change 

in a backward direction and that the change in x does not affect the 

character of the dependence between uij, E and T, but that, in accord- 
ance with equation (1.4)) it determines thi’domain of variation of this 
dependence. When the point that represents the state of stress in the 
space of variables a. , x, T reaches the yield surface (1.4)) further 
yielding of the mateIfia1 occurs according to equation (1.4) if dx >O, 
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and according to equation (1.6) if dx\(O, ‘Ihe transition from the flow 

law (1.4) to the flow law (1.6) takes place at dx = 0. ‘Ihe value x* is 

defined as that value x = x* for which dx = 0. Fixing x* in equation 

(1.6) extracts from the family a definite surface on which is found the 

point representing the state of stress of the material in the last phase 

of plastic deformation before the material re-enters the elastic region 

upon unloading. The latter surface from the family (1.6) is subsequently 

retained as a yield surface of the medium. 

If in equation (1.1) A(X) and L(u) are chosen in such a manner that 

the function u(x, x*) is everywhere non-negative and monotone increas- 

ing in x*, then it is clear that in the process described the medium 

will experience dynamic work-hardening. 

Hence, we shall proceed from the fact that in the deviator plane of 

the tensor oij there exist an infinite set of Mises circles, depending 

onT, xand x*. 

The dependence of the yield surface on the temperature Twas examined 

in t8,9I . 

‘fhe dependence of the yield limit on the strain velocity cannot, 

generally speaking, be set within the framework of a one-parameter de- 

pendence. However, the assumption that has been made here is extremely 

simple and it should be examined first. 

We assume that in the elastic region, i.e. when oij ‘ai j* < Ho(x, T), 
there occurs the finite dependence 

(1.8) 

where (I is the coefficient of volume expansion, c is a constant, and 

f(o) is a certain function of the mean stress. 

From (1.8) it follows that the volume deformation is equal to 

s=f(o)+3crT (1 .C)) 

To within a factor of l/p, entering into oij, the relations (1.8) 

transform into the usual formulas of thermoelasticity for 

c =+Po(I+v), f (6) = + piJ (1 - 2v) 6 

where E is Young’s modulus, v is Poisson’s ratio, and pb is the initial 

value of the density of the material. 

The variation of the volume deformation of steel with hydrostatic 
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pressure was examined by ESridgeman, and also by Pack, Evans, and James 
[lO,ll]. lhis variation is always elastic and up to pressures of the 
order of 280,000 atm is well approximated by a quadratic polynomial of 
the form 

AV -_= Ap--BP= 
V 

where AV is the change in volume, and p 

moderately high pressures, the function 
form 

(A, B = con&) 

is the pressure. Hence, up to 
f(o) may be represented in the 

(1.10) 

We note that the calculation of the nonlinear terms in u in equation 

(1.8), as compared to ai j ’ in the linear approximation, may be justified 
by the fact that the values of the stress deviator a..’ are always 
bounded by the values aij ’ that correspond to the yie d surface, whereas ‘i 
the values a = Pkk/p can be very large for values P,,, P,, and P,, that 
differ insignificantly. 

In the plastic region, i.e. when u;;‘u;;’ =H(x, T, x*), the strain . 
increment is equal to the sum of the elastic part, ‘Eije, 
plastic part, deijP. From (1.81, the elastic increment is 

deije = c daij’ + f 6,jr (0) da + a6ij dT 

As in the Reuss theory [l] , we take the elastic strain 
the form 

and the 
equal to 

(1.11) 

increment in 

dEijl’ :-= aij’e (i) e (02’ - H) dh, e (u) = 
0, u<o 

1, u>o 
(1.12) 

where h(t, x1, r2, x3) is a new unknown function. 

Ifence, for oij’oij’ = H(x, T, x*) (or H,,(x, 7”)) 

deij = cdaij’ + $ 8ijf(G)dG + ctdij dT + qj’e (i) dh (1.13) 

In addition to equation (1.13), the complete system in terms of the 
unknown functions p, uk, aij, T and h for describing the motion of the 
medium will moreover include: 

Continuity equation 

(1.14) 
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Momentum equation 

Heat flux equation 

dQ dU deii 
-&-=dt_Qijdt9 

(1.15) 

(1.16) 

where dQ is the external heat acquired by the particles of the medium, 
and U is the internal energy of the medium per unit mass. Also we have 
the flow law (1. l), where 

X = Eij'Eij' = C’iijrdijl + e (11) e (6,’ - H) (2CO,‘~ij’ + Cij’6jj’jL’) (1.17j 

2. We obtain now the density of the internal energy II that enters 

into equation (1.16) as a function of the determining parameters. 

As a consequence of relation (1.8), we have in the elastic range 
Cl = CJ(ai j, 7’). Ye apply the second law of thermodynamics to the revers- 
ible process of elastic deformation of the particles of the medium. 
Here, instead of lJ, it is convenient to consider the density of the free 
energy F(aij, T> = II -ST, wh ere S is the entropy density. Then 

~doij+~dT-_ijdeij+SdT =O 
zj 

Replacing dcii in this equation by expression (1.11) and setting to 
zero the coefficients of the independent incremental determining para- 
meters, we obtain 

(2.1) 

Equations (2.1) are satisfied by the function 

F z $ Oij’Oij’ + G \ a/’ (0) dS + ‘4’ (T) 

where y(T) is an arbitrary function. From (2.1) 

S = uo - q“ (T) 

(2.2) 

(2.3) 

and therefore 

I/ = -> cij’cij’ + + [cj’(c) d5 + aaT + @ (T), 0 (T) = Y (T) - TY’ (T) (2.4) 
c 

In the plastic region it is necessary, generally speaking [lZI , to 
take F = F(E~~, aij, T, x, A). R le second law of thermodynamics applied 
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to an irreversible process is expressed by the equation 

TdS=dQ+dQ’ (2-5) 

where dQ’ > 0 is the uncompensated heat. We shall assume that in the 
medium considered the uncompensated heat is proportional to the work of 

the stress forces in plastic deformation, i.e. 

dQ’ = Iialj dEijP = Iidiidiil dh = kH (X, T + x*) e(i) dA (2.6) 

Here, k denotes a certain function of the determining parameters; 

and H(x, T, x*) denotes the function H,(x, 'I') when dx LO, and the func- 

tion N,(x, T) + u(x, x*) when dx<O. Then, on the basis of equations 

(1.16) and (Z‘S), one may write the equation 

2 dsij + &daij +$dT +!&dX+gdk-Gijdeij+ . . 2.l 
” _t k~ii’bij) dh -(- SdT = 0 

Eliminating the dependent differentials of the variable parameters 

dE.. with the aid of equations (1.13), and, in agreement with equation 

(lfl) 

dX = f2Sij’ dG<i (2.7) 
i 

- width / I‘A (3) 2; [a2 - Ho (x, T)] -I- $fj\ 
\ 

and further, setting to zero the coefficients of the differentials, we 

obtain 

'Ihe solution of equations (2.8) and (2.9), 

over into (2.3), may be put in the form 

C3F 
--cqk (2.9) 

which continuously passes 

F =$H(x, T, x*)+$[~j’WW- Y(T)-f-tp(L T) --&I, T) (2.1W 

~(%,T,~*,={~i::~~+u(x,,~, ;(y;g; (Z.iff 

Here cp(A, 79 is a certain function, related to k by the equation 
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k=- ’ acp (L T) 
H (x, T, x*1 - 6% 

‘Ihe function U(X, x*) satisfies the equation 

&4 
- = A (x) L (u) 8X 

while A, is the value of A at the instant of transition from the elastic 
to plastic regions, whereupon h>A,. The uncompensated temperature is 

dQ’ = IIf (x9 T, x*) -?!+?+A 

As a consequence of (2. lo), the following expression 
the entropy 

(2.12) 

is obtained for 

(2.13) 

Hence for oi j ~Uij ’ = H(x, T, x*) we obtain (compare El31 1 
(2.14) 

u = CH (xv T, x*1 
2 ++f(+~+W’~+ ad’ - T$- [cp (A, T) - cp @o, T)I 

3. To determine the arbitrary function 0(T) in (2.5) and (2.14), we 
examine experiments for the determination of the dynamic compressibility 
induced by shock waves. Let a shock wave be propagated along an un- 
stressed, quiescent medium of density pa and absolute temperature T, = 0. 
Since the properties of a metal under high pressure approach those of a 
fluid, immediately in back of the shock wave the stress tensor may be 
assumed to be spherical, i.e. 

The propagation of the loading shock wave takes place extremely 
rapidly; therefore heat conduction may be neglected. Hence, the usual 
conditions on the shock wave [14] lead to the relations 

(3.1) 

6 &q1-$), o=-3D”+q1-+9, U_&=_+$(l+) 

where 6, is the component normal to the shock wave surface of the 
particle velocity after passage of the shock wave, D is the velocity of 
the shock wave front and o, p, U have the previous meanings and refer 
to magnitudes after passage of the discontinuity. It has been experiment- 
ally established that [151 
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D = a + b6, (a, b = const) (34 

fjence from (3.1) we find 

5 = _ 3aZ (1 - PO i P) (PO I P) 
I~--(~--Po/P)~~ 

(3.3) 

If the deviator stresses are neglected in comparison with the mean 

pressure, and the deformation is assumed to be dilatational, then, 

according to (2.5)) I! - II, will have the form 

U-&=$\aj’(a)do+aaT +0(T) (3.4) 

From equations (1.14) and (1.9) it follows that 

In $ = f (a) + 3aT (3.5j 

Then, comparing (3.1) and (3.4), and taking into account (3.3) and 

(3. S), we obtain an equation for 0(T). If f(o) has the form (1. lo), and 

we restrict ourselves to cubic terms in aT, then from the enumerated 

equations we find 

m(T) - “‘““l$~$; I) (uT)~ + . . . (3.6j 

For a final specification of the medium it is also necessary to de- 

termine the functions H,,(x, T), n(x, x*) and q(A, 7’) in the expression 

(2.14). 
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